NEAT

Evolving Neural Networks through Augmenting Topologies

Fall 2018

Slides by: Aref Moqadam Mehr

Intuition

- Easy to understand
- Easy to trace
- GPU friendly

Image From: http://medium.com/

Intuition

- More Optimized
- Fewer calculations
- Reinforcement Learning application

Basic Idea

- 1. Select an Empty Network
- 2. Randomly add Connections
- 3. Randomly mutate Connections
- 4. Optimize via Genetics Algorithms

By the way, Why?

- Can evolving topologies along with weights provide an advantage over evolving weights on a fixed-topology?
- A fully connected network can in principle approximate any continuous function.
- So why waste valuable effort permuting over different topologies?

Encoding

- TWEANNs Encoding
- Binary Encoding
- Graph Encoding
- Indirect Encoding

Problems

- Mating between different genes.
- Initial Populations
- Protecting Speciation

Genetic Encoding

Genome (Genotype)											
Node Genes	Node 1 Sensor	Nod Sen:	e 2 sor	Node 3 Sensor	Node 4 Output	Node Hidd	e 5 len				
Connect. Genes	In 1 Out 4 Weight 0.7 Enabled Innov 1		In 2 Out 4 Weight-0.5 DISABLED Innov 2		In 3 Out 4 Weight 0.5 Enabled Innov 3		In 2 Out 5 Weight 0.2 Enabled Innov 4	In 5 Out 4 Weight 0.4 Enabled Innov 5	In 1 Out 5 Weight 0.6 Enabled Innov 6	In 4 Out 5 Weight 0.6 Enabled Innov 11	
Network (Phenotype) 4 1 2 3 3											

Mutation

- Add Connection
- Add Node

Tracking Genes through Historical Markings

- When Structural Mutation Happens
- Global Innovation Number incrementally increases.
- Crossover within same GIN
- Crossover with a Gene with different GIN

Speciation

- δ: distance of different structures
- E: the number of excess genes
- D: the number of disjoint genes
- W: the average weight matching genes (including disabled genes)

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W}.$$

Explicit Fitness Sharing

- Organism in same niches share same fitness.
- a species cannot afford to become too big even if many of its organisms perform well.
- sh = 0 : if $\delta(i, j) < \delta t$ sh = 1 : otherwise

$$f'_i = \frac{f_i}{\sum_{j=1}^n \operatorname{sh}(\delta(i,j))}.$$

Minimal Solution

- Minimizing Dimensionality through Incremental Growth from Minimal Structure
- only those structures survive that are found to be useful through fitness evaluations

Performance Evaluations

- Can NEAT evolve the necessary structures?
- Can NEAT find solutions more efficiently than other Neuro-Evolution systems?

Performance Evaluations

- Evolving XORs
- Pole balancing

Bench-marks

- Pole Balancing as a Benchmark Task
- Pole Balancing Comparisons
- Double Pole Balancing with Velocities

Method	Evaluations	Generations	No. Nets
Ev. Programming	307,200	150	2048
Conventional NE	80,000	800	100
SANE	12,600	63	200
ESP	3,800	19	200
NEAT	3,600	24	150

Analysis of NEAT

Method	Evaluations	Failure Rate
No-Growth NEAT (Fixed-Topologies)	30,239	80%
Nonspeciated NEAT	25,600	25%
Initial Random NEAT	23,033	5%
Nonmating NEAT	5,557	0
Full NEAT	3,600	0

Conclusion

 Evolving topology along with weights

Any Question?

- Paper: Evolving Neural Networks through Augmenting Topologies, K. O. Stanley, et.al., 2006, MIT Press Journal
- Find this presentation online: <u>https://arefmq.github.io/</u> <u>downloads/NEAT-Presntation.pdf</u>

Link of Video: <u>https://www.youtube.com/watch?</u> <u>v=qv6UVOQ0F44&t=31s</u>

Find me on web: <u>https://arefmq.github.io/</u>

Read More: <u>https://en.wikipedia.org/wiki/</u> <u>Neuroevolution of augmenting topologies</u>