
A Debugger Tool for Vision on Humanoid
Framework

Aref Moqadam Mehr, Novin Shahroudi
Qazvin Islamic Azad University, Mechatronics Research Laboratory

Qazvin, Iran
{a.moqadammehr , n.shahroudi}@mrl-spl.ir

Abstract—In the RoboCup Standard Platform League (SPL),
NAO biped robots are used for all teams in competitions.
The robots have two on-board directional cameras and should
perform fully autonomous, which requires precise data. The
debugging tools always play critical role in developing reliable
algorithms and calibrating sensors. In this paper we present
a debugger and visualizer for vision of a standard platform
league robot. This tool can be utilized for running off-line image
processing algorithms aside calibrating the vision parameters like
camera offsets and color lookup table. It also provides a very
simple connection manager for transferring data with multiple
robots and simulator.

Keywords—vision; debugger; software; humanoid; robocup;

I. INTRODUCTION

Obviously, a reliable debugging tool plays a significant
role to accelerate the embedded software development
process. Since resources are very limited on embedded
platforms, it would be hard to track the algorithms process
properly. Therefore visualizers, loggers, networking modules,
etc. are mostly utilized to facilitate software developers. In
RoboCup scenario, debugging tools and visualizers usually
have additional features like having sensor calibrators. The
debugging tools are provided as both integrated and separated
applications. B-Human is one of the SPL competitors who
introduce an integrated debugger in their code-release [3],
[4]; it is a simulator for the game and robots, it contains tools
for plotting or calibrating the sensor data and visualizing
the data from each part too. B-Human debugger makes the
possibility to create data log by using different macros in
almost every part of the code. There are macros integrated
for logging from numeric data, transmitting image, drawing
shapes on image and plotting 2D and 3D ures. They achieved
this aim by employing a modified version of Sim-Robot
named B-Human Simulator that has capability of executing
external widgets developed for providing extra features.

rUNSWift is another SPL team which has developed a
debugger using C++-stream style [14] which is capable of
dumping the robot memory in a file and/or connecting to
a desktop client with a TCP/IP network connection using
boost::asio C++ library. The debugger can be switched on or
off during the running time. Further, to reduce the overhead of
logging, all logs are written to volatile memory, to avoid large
performance differences caused when data has to be synced
to disk. Log files can be recovered from the memory over the
network before the robot is switched off. A part of rUNSWift

debugger is named off-Nao, which can run the vision module
separately on the recorded frames for reproducing the problems
and debug the vision module. Because separated debuggers are
easier to develop, some teams prefer to use this approach. For
instance, Berlin United Nao-TH and UPennelizers teams both
use this method to debug their codes. This paper is organized
to describe the implemented modules in MRL-SPL debugging
tools. In Section 2, MRL-SPL framework is described. In
section 3 networking approaches is demonstrated while section
4 is about sensor calibrations. Section 5 explains methods for
constructing the color tables. In section 6, building log files
and data serialization are discussed.

II. FRAMEWORK

NAO robot, manufactured by Aldebaran Robotics, is a
bipedal robot with 25 degrees of freedom, two HD cam-
eras with capability of capturing 72 FPS as main sen-
sors, two infrared (IR) sensors, FSR, 3D gyro and ac-
celerometer, and two ultra sonic (Sonar) sensors. It also
possesses two speakers, and four microphones. The pro-
cessor is an Intel ATOM Z530 1.6 GHz with 1 GB of
RAM and a 2GB flash memory. This robot is also equipped
with a wireless adapter with support of 802.11b/g/n [16].
NAO cameras can capture images every 33 milliseconds, which
is about 30 images per second and in NAO-V4 it’s possible to
capture images simultaneously from both cameras. However
for off-line image processing the image must be complete, for
reviewing, there is no need to whole image. There are three
methods employed to compress the image in order to send it
on network or write it to a log file, during run time which
described in section 7.

III. NETWORK

To get images from robot cameras and transfer them, there
is a need to a network communication. There are various
options. TCP and UDP and their derivatives are popular
protocols used in almost every computer network program.
Our requirements were to get images from robot’s camera and
upload or download files in some circumstances to/from robots
easily and as fast as possible. Our team takes advantage of
both TCP and UDP. Although we have implemented both, we
use TCP in our Vision Debugger for its reliability and its rare
packet loss. We employ Google Protobuf [5] in our debugging
tools for serializing our data. Any changes in Protobuf packets
means inability in retrieving on the other side. TCP guarantees
both order and reception of all data. It is necessary to receive
all pixels within an image for example. Instead UDP is best

fit to our team communication use to multi-cast the same
amount of data to all teammates. Whether these packets may
be received in-order or late is not very important and it
is avoidable by filtering data and reducing rate of sending.
Few teams have compared these two frequently used proto-
cols in field of RoboCup [9] and Standard Platform League
such as Austin Villa [10]. So we decided to compare
them within our own implementation on two NAO robots.
We use connection-oriented [15] design in TCP. An iterative
server accepts requests in a new thread. It enables us to handle
only one client at a time but with Non-blocking I/O and select
[15] multiple connections are monitored and handled in the
same working thread. In UDP an iterative server receives any
data from specified address or port number in a new thread.
The advantage of a separate thread is that all data are processed
independently and the main process would not be affected
for receiving delays. In our implementations server program
runs on robot and debugger (the toolbox) is the client side.
IP protocol and Maximum Transmission Unit (MTU) impose
length of data in UDP and TCP packets. MTU is set by
the hardware interface. For instance, MTU in Ethernet v2
is 1500 Bytes. As amount of data our Vision debugger and
other toolboxes intend to transfer becomes larger, we need a
proper approach to handle this issue. In TCP we choose the
same approach as in [10]. In UDP, which is not a reliable
protocol, we cannot follow the same approach for sending data
as the initial packet containing size of the raw data can be lost.
Our UDP module has a packeting solution to overcome this
problem. Following structure is attached to each packet:

tag {
number of all packets
number of this packet
size of all packets
size of this packet

}

We split raw data into packets with reliable size before
sending and attach this structure to each of them. Receiver
side can extract every detail about the current reception such
as number of all packets, remained packets to receive, total
bytes to receive and remainder of that and consequently
order of packets could be calculated easily. After all packets
belonging to the same data received, the data is assembled.

As a conclusion we believe that TCP is the best choice
for a debugging system such as our Vision Debugger. Packets
reach to their destination as a whole in UDP [11]. So far it is
a better choice But our data is large enough that transmitting
them by UDP may cause packet loss. On the other hand TCP
sends bytes as a stream which means any change or loss in
bytes order is probable. This might seem as a negative point
but TCP guarantees byte order by its built-in controls [11].

IV. CALIBRATION

The camera matrix is used for projecting objects onto the
field. Robot dimensions together with the current position
of the joints matrix relative to the torso are enough to
determine the camera matrix. In addition to these parameters,
the possibility of uncertain camera attachment together with

(a)

(b)

Fig. 1: (a) Non-Calibrated and (b) Calibrated images of the perceived lines

the probable lack of correspondence between torso vertical
configuration and gyro zero position, enforce us to take
also some robot-specific parameters into account. A small
variation in the cameras orientation can lead to significant
errors when farther objects are projected onto the field [3].
In order to calibrate the mentioned robot-specific parameters,
there is a debug drawing that projects the field lines into
the camera image as it can be observed in Fig. 1. This
drawing is helpful for calibrating because the real lines and
the projected lines only match if the camera matrix and hence
the camera calibration are correct (assuming that the real
position corresponds to the self-localization of the robot).
The following paragraph will focus on camera calibration with
correction of camera position matrix. Fig. 1 demonstrates
manual camera calibration effects on the line perception
performance. The observed misalignments of center circle and
goal areas perceived lines in Fig. 1a are attributed to errors
in the camera position and orientation matrices. The term
”Camera Parameters” is generally understood to mean two
various assemblies: inherent and external. Inherent parameters
are the essential part of camera characteristics such as lens
distortion, focal length, etc., which can be determined easily
by standard calibration routines presented in [6] or may be
given by the manufacturer. Alternatively, external parameters
are classified as extraneous and imposed constraints such
as real time position estimation of head cameras relative to
a specified reference point by transformation matrices [2].

Semi-Automatic Calibration
The fundamental idea of the semi-automatic calibration is to
minimize error using Gauss-Newton algorithm [7]. The mean
of error is calculated with the distance of the user selected
points on the field lines in image with determined calibration
lines. The user has to select some points in the image, on
the field lines. The number of points user has to select is
calculated experimentally during the several calibration tries.
One of the benefits of this algorithm is wherever the points
are, it can estimate the error and minimize it. It is useful in
the competitions where the filed is usually crowded or some
parts of the lines are covered by participants or robots.
The other feature of this method is that points can be chosen
from all around the field by turning the robot’s head. This is
helpful for getting better result. We also provided an option
for changing the robot position so that robot calibration does
not depends on a fixed placement.

V. COLOR LOOKUP TABLE

A fast identification of color classes is achieved by
pre-computing the class of each color and storing it in a color
lookup table [4] (or simply color table). Calibrating color
table is another item for robot calibration and preparation
before a game. There are several patterns to fetch data from
image; these patterns are called Color Spaces. YUV, HSL
and RGB are all color spaces used in computer vision, from
which YUV performs better in color-coded environments
like RoboCup fields, also in encoding the camera outputs.
However reducing the certainty parameters from 256 colors
to 126 or 64 colors might make an uncertain color table,
the less memory usage of it worth the uncertainty. This gets
important when the resources are limited like in NAO robots.
It also could result in a better color table, which is easier to
calibrate as well as having almost the same performance in
classifying images.

Fig. 2: (left one) poor color table, (right one) rich color table.

Defining a range for each color classes could be easier
than inserting all the colors directly by selecting them. The
color ranges could be defined in polar based color spaces,
which have a value to specify the colors (theta) like Hue in
HSL color space. Selecting colors by ranges is an approach
to a dense color table resulting more reliable object detection.
The purpose of HSL color table is to select colors which have
small amount of pixels in image, like white colors which

are mainly used to detect the field lines but hard to set via
brushes. This could be observed in Fig. 3.

Fig. 3: differences between YUV (left one) and HSL (right one) color tables.

In order to use the color table in robot the selected HSL
color ranges must be converted to YUV space. Each HSL
color is converted to YUV using RGB as a medial color
space. The conversion formulas are shown in equation 2 and
3 respectively.

C = (1− |2L− 1|)× SHSL

H ′ = H
60◦

X = C(1− |H ′mod2− 1|)

(R1, R2, R3) =

(C,X, 0) if0 ≤ H ′ < 1
(X,C, 0) if1 ≤ H ′ < 2
(0, C,X) if2 ≤ H ′ < 3
(0, X,C) if3 ≤ H ′ < 4
(X, 0, C) if4 ≤ H ′ < 5
(C, 0, X) if5 ≤ H ′ < 6

m = L− C
2

(R,G,B) = (R1 +m,G1 +m,B1 +m)

(1)

[
Y
U
V

]
=

[
0.299 0.587 0.114
−0.14713 −0.28886 0.436
0.615 −0.51499 −0.10001

][
R
G
B

]
(2)

VI. CONTROLLER

To control robot locomotion and head motion a controller
has been implemented in this debugger, which could be helpful
during calibration or running a fake game. This controller
sends walk command or the head motion pattern to robot
by TCP/IP, which is previously discussed. These commands
include the walking velocity in three dimensions (X, Y, theta)
and head motion command that can be tracking the goal or the
ball. This is achieved by developing scripts for head motion
and walk in robot and switching them by user.

VII. LOGGING DATA

In order to reproduce the problems that rarely occur, for
debugging, the robot sensor data must be written to a log
file. Google Protobuf [5] is being employed to use as a
protocol buffer with the same structure used to transmit data
on network. The Serialization and De-Serialization functions
are implemented in each representation class to be used as
an interface for Protobuf. These functions convert objects to
Protobuf classes and conversely.
Google Protobuf has methods for converting the objects to an
array of data, which can be sent on network or stored in a file.
We use a pattern to save data in file, just like sending it via
network. A number indicating the packet size is added to the
beginning of data in order to surf the log file. For compressing
image, only Y channel of YUV color space is picked, which
represents the lightness of that pixel so that it could provide
a gray-scale image. The image captured by cameras is in
YUV422 color space, which means there is only one Y value
for each pixel. It also decreases the size of each channel from
1 byte to 4bit (half a byte) that consequently reduces the image
size to half. Another method for compressing the image is to
reduce its resolution, so in each set of n pixels only one of
them is picked and the others are skipped. The Equation 3
represents how to compress the image in which Imgout will
be transmitted on network and Imgraw is the image captured
by camera. W is a constant for width of the image and iy and
ix are respectively position of the i − th pixel in height and
width (X and Y vector).

Imgout[
iy ∗W

8
+

ix
2
] = Imgraw[

iy ∗W
2

+ ix] (3)

VIII. OFF-LINE IMAGE PROCESSING

Running Image Processing code on the off-line (recorded)
log file enables user to debug faster by making debugging
instructions easy and also make the possibility to run Image
Processing for one single frame over and over, in order
to solve problems for special cases. An object from Image
Processing module has been created which provides the image
as the camera-captured image by reading from the log file. It
creates Image Processing module as an external widget, which
can be run by simulating the environment and sensors. The
connection between the debugger and the image processing
module is same as the connection used to transmitting data in
network. The widgets and the main form are connected using
Qt signal/slot approach.

EXPERIMENTAL RESULTS

In our first demonstration (Fig. 5a) the fact that UDP is
faster than TCP is proved but it does not mean UDP packets
will get to their destination earlier than TCP (Fig. 5b). It is
only fast in making packets in the origin and destination.
This test is taken place in a local machine. As the time takes
a packet gets to its destination on a local machine becomes
very short the calculated time is the amount spent for creation
and reading it.

As it is mentioned in [11] TCP for its reliability and UDP
for its fast and easy transmission are both good choices. Our

Fig. 4: Comparing UDP and TCP speed in local machine

Low Traffic High Traffic
Method RTT Method RTT
Ping 2.3620 ms Ping 4.9173 ms
UDP 2.8914 ms UDP 4.3063 ms
TCP 3.3539 ms TCP 7.9125 ms

TABLE I: Average Round Trip Time in low and high traffic conditions for
fixed packet size

demonstrations can help to see where and when each of them
can be used, especially in SPL. Round Trip Time (RTT) is
the main criterion in these tests, which is computed for both
protocols. Ping command is also used as a valid criterion for
RTT calculation. We did two different tests in a single hop
wireless network on two NAO robots. First was testing the
consistency of UDP and TCP by measuring the RTT of a 500
bytes packet in 30 different tests named test steps in Fig. 5a.
By consistency we mean how many times the result is similar
with other tests. Table-I shows the average RTT calculated
for each method we used in low and high traffic networks.

In our second demonstration we increased size of the
packets incrementally to see how each of UDP and TCP
changes its behavior by increasing the size of packet. Again
this test took place in both a low traffic and a congested
network. We added this traffic by copying a large file from
one computer to another in the network and a GameController
[13] running which was broadcasting all the time. Fig. 5b
shows the moving average plot of this demonstration. Zero
values indicate the packet loss.

From the above figures it could be understood that TCP
has a larger Round Trip Time in packets larger than 10Kbytes
but has almost the same time with UDP in lower sizes. In
Fig. 5 UDP packets are lost after 46500 Bytes. This happened
because the maximum size of buffer set as an option for the
socket could not go further on robots.

(a)

(b)

Fig. 5: Comparing RTTs calculated from Ping, UDP and TCP with (a) fixed
and (b) incremental packet size in low and high traffic network.

ACKNOWLEDGMENT

Authors gratefully acknowledge the technical support of
Mechatronics Research Laboratory and MRL-SPL team mem-
bers, for their hard work during the development of our team
for this years RoboCup competitions and also a special thanks
to Mr. Mohammad Shafiei, head of vision group in MRL-SPL
and Mr. Mohammad Ali Zakeri for their valuable suggestions
and reviews about this paper.

REFERENCES

[1] Nokia Development Team, Digia, Qt-SDK-4.7, doc.qt.nokia.com
[2] E. Hashemi, M. Ghaffari Jadid, M. Lashgarian, M. Yaghobi,

M. Shafiei R. N. “Particle Filter Based Localization of the Nao Biped
Robots” Fauclty of Industrial and Mechanical Eng., Faculty of Electrical,
IT, and Computer Eng., Qazvin Branch, Islamic Azad University, Qazvin,
Iran.

[3] T. Rfer, T. Laue, “B-Human Team Report and Code Release 2011”,
Deutsches Forschungszentrum fr Knstliche Intelligenz, Enrique-Schmidt-
Str. 5, 28359 Bremen, Germany Universitt Bremen, Fachbereich 3,
Postfach 330440, 28334 Bremen, Germany , November 3, 2011

[4] T. Rfer, T. Laue, “B-Human Team Report and Code Release 2010”,
Deutsches Forschungszentrum fr Knstliche Intelligenz, Enrique-Schmidt-
Str. 5, 28359 Bremen, Germany Universitt Bremen, Fachbereich 3,
Postfach 330440, 28334 Bremen, Germany , October 1, 2010

[5] Google: Google protocol buffers Protobuf (July 2008) Open source
project.
https://code.google.com/apis/protocolbuffers/docs/overview.html

[6] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.
11, pp. 13301334, 2000.

[7] F. Dan Foresee and Martin T. Hagan, “GAUSS-NEWTON APPROXI-
MATION TO BAYESIAN LEARNING”, Lucent Technologies , Okla-
homa City, OK

[8] J. Postel, “Internet Protocol: DARPA Internet Program Protocol Specifi-
cation,” RFC 791, Sept. 1981.

[9] P. Stone, K. Dresner. “The UT Austin Villa 2005 RoboCup Four-Legged
Team. Technical Report” UT-AI-TR-05-325, The University of Texas at
Austin, Department of Computer Sciences, AI Laboratory, 2005.

[10] P. Stone, K. Dresner. “The UT Austin Villa 2003 RoboCup Four-Legged
Team. Technical Report” UT-AI-TR-03-304, The University of Texas at
Austin, Department of Computer Sciences, AI Laboratory, 2003.

[11] W. R. Stevens, UNIX Network Programming Vol. 1, Third Edition: The
Sockets Networking API, Addison Wesley, 2003.

[12] ”RFC 1122 - Requirements for Internet Hosts – Communication Lay-
ers”. p.42. Retrieved 2012-03-19.

[13] Robocup Committee “Robocup Game Controller” http://www.tzi.de/spl/
pub/Website/Downloads/GameController2012.zip

[14] A. Ratter , B. Hengst, “rUNSWift Team Report 2010”, School of
Computer Science & Engineering, University of New South Wales,
Sydney 2052, Australia, October 30, 2010

[15] IBM, iSeries Socket programming version 5 release 3. RFC793 , p. 13
[16] Aldebaran Robotics, “Data sheet NAO Humanoid Next Gen-H21/H25

Model”, November 2012

https://code.google.com/apis/protocolbuffers/docs/overview.html
http://www.tzi.de/spl/pub/Website/Downloads/GameController2012.zip
http://www.tzi.de/spl/pub/Website/Downloads/GameController2012.zip

	I Introduction
	II Framework
	III Network
	IV Calibration
	V Color lookup Table
	VI Controller
	VII Logging Data
	VIII Off-line Image Processing
	References

