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8.1 Introduction

● Grid-Structured Data Representation
- Example: 2D Images

● Have strong spatial dependencies in local regions.
- Example: adjacent location in image often have similar colors

● Translation Invariance
- Example: A banana has the same interpretation whether it's at the top or bottom 

of an image.
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A bit of History

● Hubel and Wiesel studied cat’s visual cortex (1959)
● LeNet-5 for recognizing hand-written digits on checks (1998)
● ImageNet contests played an important role in increasing the prominence of CNNs
● since 2012, CNNs are consistent winner of this challenge
● In 2012 AlexNet succeeded in this challenge by a large margin
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Computer Vision

● Computer vision is a rapidly growing field thanks to deep learning methods.
● Problems includes:

- Image Classification
- Object Detection
- Neural Style Transfer
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Computer Vision

● For example, a 1000x1000 image will represent 3 million feature/input to the full 
connected neural network. If the following hidden layer contains 1000, then we will want 
to learn weights of the shape [1000, 3 million] which is 3 billion parameter only in the 
first layer and thats so computationally expensive!
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8.2 Basic Structures

● Image is made of set pixels.
● each pixels contains the intensity of 

the specified location.
● Image is usually represented as a 

Metric with three dimensions: 
width, height, and color channel
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Edge Detection
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Edge Detection

● 3*1 + 0*0 + 1*(-1) + 1*1 + 5*0 + 8*(-1) + 2*1 + 7*0 + 2*(-1) = -5
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Edge Detection
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Edge Detection

● Formal Definition:

● i,j,k indicate the position along height, width, and depth
● q corresponds to the q-th layer of network.
● hq represent the value of the q-th layer.
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Edge Detection

● Vertical Edge Detection
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Edge Detection

● We can achieve different results from different kernels
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Edge Detection

● We can achieve different results from different kernels
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Edge Detection

● The challenge is to find right weights
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Understanding Convolutions

● Sparse connectivity because we are creating a feature from a region in the input 
volume of the size of the filter. 

- Trying to explore smaller regions of the image to find shapes. 
● Shared weights because we use the same filter across entire spatial volume. 

- Interpret a shape in various parts of the image in the same way. 
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Padding

● The convolution operation reduces the size of the (q + 1)th layer in comparison with the 
size of the q-th layer. 

- This type of reduction in size is not desirable in general, because it tends to lose 
some information along the borders of the image (or of the feature map, in the 
case of hidden layers). 

● This problem can be resolved by using padding.
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Padding

● Input size: n
● Kernel size: f
● Output size: o = n - f + 1

6 x 6

3 x 3
4 x 4
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Padding

● Output size: o = n + 2p - f + 1 �28

3 x 3

6 x 6

8 x 8



Padding

● Terminology for two types of convolution layers:
● “Valid” Convolution layers: No padding (           )
● “Same” Convolution layers: Input size equals output size (                    )
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Stride
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Stride
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Convolution over Volumes
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Convolution over Volumes
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One Layer of Convolution Network
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Typical Settings

● It is common to use Stride=1
● It is common to use square images ( Lq = Bq ) because it is easier to work with.
● Usually Fq = 3 or 5. In general smaller filter often delivers better results.
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Simple Convolutional Neural Network
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image

36x36x3
37x37x10 17x17x20

7x7x40

f=3 
s=1 
p=0 
k=10

f=5 
s=2 
p=0 
k=20

f=5 
s=2 
p=0 
k=40

● width and height reduce from left to right.
● depth increases from left to right.
● Thus features are more abstract and apply on larger region of the initial image.
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Pooling

● The pooling operation works on small grid regions of size Pq × Pq in each layer, and 
produces another layer with the same depth. 

● For each square region of size Pq × Pq in each of the dq activation maps, the maximum 
of these values is returned. 

● It is common to use a stride Sq > 1 in pooling (often we have Pq = Sq). 
● Pooling drastically reduces the spatial dimensions of each activation map.
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Pooling
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Pooling

● Max or Average Pooling
● Have same dq in input and output.

● No Parameters to Learn!
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Fully Connected Network

● Each feature in the final spatial layer is connected to each hidden state in the first fully 
connected layer. 

● This layer functions in exactly the same way as a traditional feed-forward network. 
● In most cases, one might use more than one fully connected layer to increase the 

power of the computations towards the end. 
● The connections among these layers are exactly structured like a traditional feed-

forward network. 
● The vast majority of parameters lie in the fully connected layers.
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The Interleaving between layers

● The convolution, pooling, and ReLU layers are typically interleaved in order to increase 
expressive power. 

● The ReLU layers often follow the convolutional layers, just as a nonlinear activation 
function typically follows the linear dot product in traditional neural networks. 

● After two or three sets of convolutional-ReLU combinations, one might have a max-
pooling layer.
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Why Convolutional Neural Networks?

● Two main advantages of CNNs are:
- Parameter sharing.

■ A feature detector (such as a vertical edge detector) that's useful in one 
part of the image is probably useful in another part of the image.

- sparsity of connections
■ In each layer, each output value depends only on a small number of 

inputs which makes it translation invariance.
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8.3 Training a Convolutional Neural Network

● There are three operations: convolutions, max-pooling, and ReLU. 
● The ReLU backpropagation is the same as any other network. 

- Passes gradient to a previous layer only if the original input value was positive. 
● The max-pooling passes the gradient flow through the largest cell in the input volume. 

● Main complexity is in backpropagation through convolutions.
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Pooling layers

● Max-pooling - the error is just assigned to where it comes from - the “winning unit” 
because other units in the previous layer’s pooling blocks did not contribute to it hence 
all the other assigned values of zero

● Average pooling - the error is multiplied by 1/N×N and assigned to the whole pooling 
block (all units get this same value).
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Backpropagating through Convolutions

● We are looking for                     (m, n are Kernel iterators)

● Convolution between the input feature map of dimension HxW and the weight kernel of 
dimension k1 × k2 produces an output feature map of size  (H− k1 +1) by (W−k2+1). 
The gradient component for the individual weights can be obtained by applying the 
chain rule in the following way:

�52Read more: 📚

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/


Backpropagating through Convolutions

● xli,j is equivalent to ∑m∑n wlm,n ol−1i+m,j+n + bl and expanding this part of the equation gives 
us:
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Backpropagating through Convolutions

● Further expanding the summations and taking the partial derivatives for all the 
components results in zero values for all except the components where m=m' and 

● n=n’  in                   as follows
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Backpropagating through Convolutions

● Substituting previous equation with the one on page 51 gives us the following results:
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Backpropagating through Convolutions

● Using chain rule and introducing sums give us the following equation:

● Q is the output region after applying padding and stride
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Backpropagating through Convolutions

● A bit more formal way would be:
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Backpropagating through Convolutions

● We know                   is equals to

● So we have:
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Backpropagating through Convolutions

● By expanding previous equation we would have:
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Backpropagating through Convolutions

● and finally:
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Backpropagating through Convolutions

● However, this computation assumes that all weights are distinct, whereas the weights in 
the filter are shared across the entire spatial extent of the layer. Therefore, one has to 
be careful to account for shared weights, and sum up the partial derivatives of all 
copies of a shared weight.

● In other words, we first pretend that the filter used in each position is distinct in order to 
compute the partial derivative with respect to each copy of the shared weight, and then 
add up the partial derivatives of the loss with respect to all copies of a particular weight. 
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Backprop. with Inverted / Transposed Filter

● For simplicity the depth of output and input convolution layers was considered 1.
● In such a case, the convolution filter is inverted both horizontally and vertically for 

backpropagation.
● The reason for this inversion is that the filter is “moved around” to perform dot product. 

Whereas the backpropagation derivatives are with respect to the input volume whose 
relative movement with respect to the filter is the opposite of the filter movement during 
convolutions.
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Matrix Multiplication

● Assume we have input with size of AI = Lq x Lq x 1    (dq = 1)
● and out put with size of AO = (Lq - Fq + 1) x (Lq - Fq + 1) x 1
● The process is as below:

- Flatten the input, AI into a AI-dimensional column vector
- Consider the output will be AO-dimensional column vector
- Create a sparse matrix C from the Filter (a matrix with size of AI x Ao)
- The value of each entry in the row corresponds to one of the AI positions in the 

input matrix. The value is 0, if that input position is not involved in the 
convolution for that row.

- Otherwise, the value is set to the corresponding value of the filter. 
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Matrix Multiplication
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Data Augmentation

● If data is increased, your deep NN will perform better. Data augmentation is one of the 
techniques that deep learning uses to increase the performance of deep NN.

● Some data augmentation methods that are used for computer vision tasks includes:
- Mirroring.
- Random cropping.

■ The issue with this technique is that you might take a wrong crop.
■ The solution is to make your crops big enough.

- Rotation.
- Shearing.
- Local warping.
- Color shifting.

■ For example, we add to R, G, and B some distortions that will make the image 
identified as the same for the human but is different for the computer.
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Data Augmentation
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Data Augmentation
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8.4 Case Studies

● Classic Networks
- LeNet-5
- AlexNet
- VGG

● Deeper network
- ResNet (152 layers!!!)

● Inceptions Neural Networks
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LeNet-5

● The goal was recognize hand-written digits.
● 60K Parameters

�70LeCun et al., 1998. Gradient-based learning applied to document recognition
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AlexNet

● 60M parameters

�71Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks
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VGG-16

● 138M Parameters

�72Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition
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ZFNet

● Based on Alexnet but 
with minor changes

● Winner of ImageNet in 
2013
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Residual Networks (ResNets)

�74He et al., 2015. Deep residual networks for image recognition

a[l] → Linear → ReLU → a[l+1] → Linear → ReLU → ⊕ → a[l+2] 

z[l+1] = W[l+1] a[l] + b[l+1]     a[l+1] = g(z[l+1])    z[l+2] = W[l+2] a[l+1] + b[l+2]    a[l+2] = g(z[l+2]) 

a[l+2] = g(z[l+2] + a[l])

“Shortcut”



Residual Networks (ResNets)

�75He et al., 2015. Deep residual networks for image recognition
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Network in Network and 1×1 convolutions

● Convolution by 1x1 filter is just multiplying the image in that filter (value)
● But it does more than that!

�76Lin et al., 2013. Network in network



Network in Network and 1×1 convolutions

● It do element-wise product of the volume.
● And then apply ReLU

�77Lin et al., 2013. Network in network
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Inception Network

● Design the layers by itself, in other word, have all of the layer architecture inside it.

�78Szegedy et al., 2014. Going deeper with convolutions



Inception Network

● Instead of using this: (120M parameters)
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Inception Network

● We use this: (12.4M parameters)
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Inception Module

● Inception Module
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Inception Network (GoogLeNet)

● Architecture

�82



Table of content

● 8.4 Case StudiesBackpropagating through Convolutions
✓ LeNet
✓ AlexNet
✓ VGG
✓ ZFNet
✓ ResNet
✓ Network in Network and 1×1 convolutions
✓ Inception Network
● Transfer Learning

�X



Transfer Learning

● If you are using a specific NN architecture that has been trained before, you can use 
this pre-trained parameters/weights instead of random initialization to solve your 
problem.

● It can help you boost the performance of the NN.
● The pre-trained models might have trained on a large datasets like ImageNet, Ms 

COCO, or pascal and took a lot of time to learn those parameters/weights with 
optimized hyper-parameters. This can save you a lot of time.
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Transfer Learning

● For Example
- Lets say you have a cat classification problem which contains 3 classes Tigger, Misty 

and neither.
- You don't have much a lot of data to train a NN on these images.
- Download a good NN with its weights, remove the softmax activation layer and put 

your own one and make the network learn only the new layer while other layer 
weights are fixed/frozen.

- One of the tricks that can speed up your training, is to run the pre-trained NN without 
final softmax layer and get an intermediate representation of your images and save 
them to disk. And then use these representation to a shallow NN network. This can 
save you the time needed to run an image through all the layers.
■ Its like converting your images into vectors.
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8.6 Application of Convolution Network

● Convolutional neural networks have several applications in object detection, 
localization, video, and text processing. 

● The success of convolutional neural networks remains unmatched by almost any class 
of neural networks. In recent years, competitive methods have even been proposed for 
sequence-to-sequence learning, which has traditionally been the domain of recurrent 
networks. 

�86Read more about sequence-to-sequence learning 📚

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf


Table of content

● 8.6 Application of Convolution Network
● Content-Based Image Retrieval 
● Object Detection & Localization
● Natural Language and Sequence Learning 
● Video Classification

�X



Content-Based Image Retrieval 

● In content-based image retrieval, each 
image is first engineered into a set of 
multidimensional features by using a 
pretrained classifier like AlexNet. 

● The multidimensional representations of the 
images can be used in conjunction with any 
multidimensional retrieval system to provide 
results of high quality. 

● The reason that this approach works is 
because the features extracted from AlexNet 
have semantic significance to the different 
types of shapes present in the data. 
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Object Detection & Localization

● In object localization, we have a fixed set of objects in an image, and we would like to 
identify the rectangular regions in the image in which the object occurs. 
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Natural Language and Sequence Learning 

● At first sight, convolutional neural networks do not seem like a natural fit for text-mining 
tasks. 

- Unlike image, in text position of the representing data is quite important
● Instead of 3D boxes with a spatial extent and a depth, the filter for text data are 2D 

boxes with a window length for sliding the sentence.
● Use of one-hot encoding increases the number of channels, and therefore blows up the 

number of parameters in the filter in the first layer
- Instead using pretained embeddings of the words such as Word2Vec or GLoVe 

are used.
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Video Classification

● Videos can be considered generalizations of image data in which a temporal 
component is inherent to a sequence of images. (spatio-temporal data)

● Instead of 2D (+ depth) filter, a 3D filter (+ depth) is used.
● An interesting observation is that 3-dimensional convolutions add only a limited amount 

to what one can achieve by averaging the classifications of individual frames by image 
classifiers 

- A part of the problem is that motion adds only a limited amount to the 
information that is available in the individual frames for classification purposes. 

- sufficiently large video data sets are hard to come by. 
● For the case of longer videos, it makes sense to combine recurrent neural networks (or 

LSTMs) with convolutional neural networks 
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8.7 Summery

● Primary focus of these networks are in Image Processing and Computer Vision
● These networks are biologically inspired and are among the earliest success stories of 

Neural Networks.
● CNNs typically learn hierarchical features in different layers, where the earlier layers 

learn primitive shapes, whereas the later layers learn more complex shapes.
● Recently, convolutional neural networks have also been used for text processing, 

where they have shown competitive performance with recurrent neural networks.
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Thanks for your attention!
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